Acid – Base Balance

Alicja Bartkowska-Sniatkowska
Department of Pediatric Anesthesiology and Intensive Therapy

Poznan University of Medical Sciences
Monitoring of acid–base balance is essential for biochemical changes in the organism and the hydrogen ion concentration in plasma and other water spaces

Acid–base equilibrium is a pivotal topic in the biomedical sciences and clinical medicine. Studied by literally millions of people it is often perceived as difficult. This may be because the commonly taught approaches to acid–base physiology are confusing and illogical.

Learning objectives (1)

1. Body organism all the time produces some acids as lactic acid, uremic acid or H_2CO_3...

2. During the activity the total amount of acids is rapidly increased

3. The second place of acid release is digestive system which can produce gastric acid

4. Intake of acid with food and transport them into the blood
Acid – base balance depends mainly in the activity of buffers in the blood

1. bicarbonate

\[\frac{[\text{HCO}_3^-]}{[\text{H}_2\text{CO}_3]} \]

2. phosphate

\[\frac{[\text{HPO}_4^{2-}]}{[\text{H}_2\text{PO}_4]} \]

3. plasma proteins

4. red blood cells
Learning objectives (3)

- Red blood cell buffer

1. in the lungs
 oxyhemoglobin is stronger acid than hemoglobin and release Cl- from red blood cells into the plasma

2. in the tissues
 in venous blood Cl- return to red blood cells and this process is responsible for the constant pH of venous plasma
1908 Lawrence Joseph Henderson used for the dissociation equation of carbonic acid

\[
\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{HCO}_3^- \rightleftharpoons \text{H}_2\text{CO}_3
\]

This equation is characterised by the following:

* the law of mass action
* the speed of chemical reaction is proportional to the concentration of reagents
The substitution of bicarbonate ion with carbon dioxide \((CO_2)\) is an easier parameter to evaluate.

\[
K_1 \times [CO_2] \\
H^+ = \frac{HCO_3^-}{H^+}
\]
In 1916 Karl Albert Hasselbach converted the Henderson equation into the form corresponding to the pH equation introduced by Sorensen 6 years earlier and replaced the concentration of dissolved, molecular carbon dioxide with its tension leading to:

\[\text{pH} = \text{pK} + \log \frac{\text{HCO}_3^-}{\text{SCO}_2 \times \text{PCO}_2} \]

SCO₂ is the solubility coefficient for CO₂, being 0.03 mmol l⁻¹mmHg⁻¹ at 37°C

pK a negative decimal logarithm of the constant K from equation = 6.1 at 37°C
H⁺ concentration

- **H⁺ concentration** is normally maintained within tight limits around a normal value of about \(0.00004 \text{ mEq/L} = 40 \text{ nEq/L}\).

Normal variations are only about 3 to 5 nEq/L, but under extreme conditions, the H⁺ concentration can vary from as low as 10 nEq/L to as high as 160 nEq/L without causing death.

- Because H⁺ concentration normally is low is necessary to express H⁺ concentration on a logarithm scale, using pH units.
pH is related to the actual H+ concentration by the following formula:

\[
pH = \log \frac{1}{[H^+]} = -\log [H^+]
\]

\[[H^+] = 40 \text{ nEq/L (}0.00000004\text{ Eq/L)} \]
\[pH = -\log [0.00000004] \]
\[pH = 7.4 \]

Haselbach introduced the term “standard pH” as value of pH of oxygen–saturated blood at PaCO2 40 mmHg (5.33 kPa) and temperature 37°C.
pH is related to the H\(^+\) concentration

- low pH corresponds to: high H\(^+\) concentration

- high pH corresponds to: low H\(^+\) concentration
Body fluids...
pH and H⁺ Concentration of Body Fluids

<table>
<thead>
<tr>
<th>Fluid</th>
<th>H⁺ Concentration (mEq/L)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracellular fluid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arterial blood</td>
<td>4.0 \ 10⁻⁵</td>
<td>7.40</td>
</tr>
<tr>
<td>Venous blood</td>
<td>4.5 \ 10⁻⁵</td>
<td>7.35</td>
</tr>
<tr>
<td>Interstitial fluid</td>
<td>4.5 \ 10⁻⁵</td>
<td>7.35</td>
</tr>
<tr>
<td>Intracellular fluid</td>
<td>1 \ 10⁻³ to 4 \ 10⁻⁵</td>
<td>6.0 to 7.4</td>
</tr>
<tr>
<td>Urine</td>
<td>3 \ 10⁻² to 1 \ 10⁻⁵</td>
<td>4.5 to 8.0</td>
</tr>
<tr>
<td>Gastric HCl</td>
<td>160</td>
<td>0.8</td>
</tr>
</tbody>
</table>
Extracellular fluid – pH

- pH of arterial blood – 7.4
- pH of venous blood and interstitial fluids – 7.35 because of the extra amounts of carbon dioxide \((\text{CO}_2)\) released from the tissues to form \(\text{H}_2\text{CO}_3\) in these fluids

- **acidosis** – pH falls <7.4
 The lower limit of pH at which a person can live more than a few hours is about 6.8

- **alkalosis** – pH rises above >7.4
 The lower limit of pH at which a person can live more than a few hours is about 6.8, and the upper limit is about 8.0
Extracellular fluid – pH

\[\text{pH} = 7.4 \]

\[\text{PaCO}_2 = 40 \text{ mmHg (5.3 kPa)} \]

\[\text{Bicarbonates} = 25 \text{ mmol/l} \]
Intracellular fluid

- **Intracellular pH** usually is slightly lower than plasma pH because the metabolism of the cells produces acid, especially H_2CO_3.

- Depending on the type of cells, the pH of intracellular fluid has been estimated to range between **6.0 and 7.4**.

- **From the clinical point of view!!!**

 hypoxia
 poor blood flow

 acid accumulation → decreased intracellular pH
Urine

- The pH of urine can range from 4.5 to 8.0, depending on the acid–base status of the extracellular fluid.

- Kidneys play a major role in correcting abnormalities of extracellular fluid H^+ concentration by excreting acids or bases at variable rates.
Gastric acid

- **HCl secretion** into the stomach by the oxyntic (parietal) cells of the stomach mucosa is an extreme example of an acidic body fluid.

- The H\(^+\) concentration in these cells is about 4 million times greater than the hydrogen concentration in blood, with a pH of 0.8.
Homeostasis
Homeostasis

balance between
the intake or production of H^+

and the net removal of H^+ from the body
How to achieve acid–base homeostasis?
Acid is...

- A strong acid is one that rapidly dissociates and releases especially large amounts of H^+ in solution (HCl).

- Weak acids have less tendency to dissociate their ions and, therefore, release H^+ with less vigor.
Acid is...

- Molecule containing hydrogen atoms that can release hydrogen ions in solutions
 - **HCL** – hydrochloric acid, which ionizes in water to form hydrogen ions (H⁺)
 strong acid
 - **Cl** – chloride ions
 - **H₂CO₃** – carbonic acid ionizes in water to form H⁺ and bicarbonate ions (HCO₃⁻)
 weak acid
A strong base is one that reacts rapidly and strongly with H^+ and, therefore, quickly removes these ion from a solution (OH^-)

- weak base is HCO_3^- because it binds with H^+ much more weakly than does OH^-
Base is...

- an ion or a molecule that can accept an H^+
 - HCO_3^- is a base because it can combine with H^+ to form H_2CO_3
 - weak base
 - OH^-
 - strong base
 - HPO_4^{2-}, the *hydrogen phosphate* anion, is a base because it can accept an H^+ to form H_2PO_4^-
 - Proteins, amino acids that make up proteins have net negative charges that readily accept H^+
Alkali is...

- Molecules formed by the combination of one or more of the alkaline metals – sodium, potassium, lithium and so forth—with a highly basic ion such as a hydroxide ion (OH⁻)
Alkalosis
refers to excess removal of H\(^+\) from the body fluids

Acidosis
is a contrast to the excess addition of H\(^+\)
changes in the hydrogen ion concentration in blood results from changes in concentration of volatile and non–volatile acids

Volatile – CO₂
eliminated by the lungs – changes in them are classified as respiratory

Non–volatile – hydrochloric, lactic, sulphuric etc.
changes are classified as metabolic
Copenhagen approach

- Conventional method of interpretation, based on Henderson–Hasselbach equation
- Focuses on the excess / deficiency of bases
- Classical theory – disturbance is classified as
 1. *respiratory* if the change originally concerns the tension of CO₂
 2. *metabolic* of it concerns metabolic acids
Copenhagen evaluation

- **Buffer bases (BB)**
 - difference between the sum of all strong (i.e. completely dissociated) cations and the sum of all strong anions
 - their levels increase in metabolic alkalosis and decrease in metabolic acidosis

- **Standard bicarbonates**
 - concentration of bicarbonates in the blood sample at PaCO2 40 mmHg (5.33 kPa) and temperature 37°C

- **Base excess**
 - the amount of a strong acid or base required to return the in vitro pH of 1 litre of completely oxygen-saturated human blood to 7.4 at 37°C (originally 38°C) assuming PaCO2 of 40 mmHg (5.33 kPa)
 - in vivo – some inaccuracies occur – e.g. changes of CO₂ tension and influence of hemoglobin concentration changes is ignored
Boston approach

- Essential is analysis of bicarbonate ion concentration
- Disturbances are determined by assessing whether the changes in the concentration of HCO$_3^-$ and PaCO$_2$ coincide with the expected ones
Decreased HCO_3^- and PCO_2 suggests metabolic acidosis or respiratory alkalosis. Mixed disturbances cannot be excluded.

Increased HCO_3^- and PCO_2 suggests metabolic alkalosis and respiratory acidosis. Mixed disturbances cannot be excluded.

When HCO_3^- and PCO_2 change in opposite directions, some mixed disturbances should be considered.
And finally...

Modern theory is leading to...
The essence of modern theory:

Only three elements (called independent variables) influence the hydrogen ion concentration:

- the mentioned CO$_2$ tension
- SID

 $SID - strong\ ion\ difference$
- A_{TOT}

 $A_{TOT} - total\ concentration\ of\ weak\ acids$
SID (strong ion difference)

- Difference between the sum of all strong cations and the sum of all strong anions
- Correlates with BB (buffer bases described 50 years ago) — but concerns only plasma and ignores the effects of hemoglobin
- Normal ranges 40 – 42 mmol/l
\(A_{\text{TOT}} \) (total concentration of weak acids)

- Determine the concentration of hydrogen ions
- Could be affected by proteins (particularly albumins) and phosphates
- The influence on acid–base balance depends on their total amount and dissociation balance
- Difficulties in calculating \(A_{\text{TOT}} \) limit its usefulness for acid–base evaluation

Kellum JA: Determinants of blood pH in health and disease. Critical Care 2000; 4: 6–14
Concept of anion gap (AG)

\[AG = (Na^+ + K^+) - (Cl^- + HCO_3^-) \]

12 mmol/l

\[AG = (Na^+ + K^+) - (Cl^-) + HCO_3^- = \text{Albumin} + PO_4^- + XA \]

- Reflects anions in this equation: proteins, phosphates, and other anions (XA – anion from unidentified organic acid)
- Limits:
 1. critically ill patients – the concentration of plasma proteins is particularly important as a decrease in serum albumin concentrations reduces the anion gap
 2. hypoalbuminemia and hypophosphatemia – AG could be normal even the unmeasured ions are present
Regulation of H^+ concentration
There are three primary systems that regulate the H^+ concentration in the body fluids to prevent acidosis or alkalosis:

- buffers
- lungs
- kidneys
the chemical acid–base buffer systems of the body fluids, which immediately combine with acid or base to prevent excessive changes in H+ concentration

Buffer systems do not eliminate H+ from or add them to the body but only keep them tied up until balance can be reestablished

“Buffer Power” is determined by the amount and relative concentrations of the buffer components
Lungs

The *respiratory center, which regulates the* removal of CO$_2$ (and, therefore, H$_2$CO$_3$) from the extracellular fluid.

The *respiratory system, also acts within a few minutes to eliminate CO$_2$ and, therefore, H$_2$CO$_3$ from the body.*
Can excrete either acid or alkaline urine, thereby readjusting the extracellular fluid H+ concentration toward normal during acidosis or alkalosis.

The kidneys, the third defense line, can eliminate the excess acid or base from the body. Although they are relatively slow to respond compared with the other defenses, over a period of hours to several days, they are by far the most powerful of the acid-base regulatory systems.
Buffers
Buffering of Hydrogen Ions in the Body Fluids (*general formula*)

Buffer + H \rightleftharpoons HBuffer

- free H+ combines with the buffer to form a weak acid (H buffer) that can either remain as an unassociated molecule or dissociate back to buffer and H+.

- When the H+ concentration *increases*, the reaction is forced to the right, and more H+ binds to the buffer, as long as buffer is available.

- Conversely, when the H+ concentration *decreases*, the reaction shifts toward the left, and H+ is released from the buffer.
Bicarbonate Buffer System

- quantitatively the most important in the extracellular fluid
- consists of a water solution that contains two ingredients:
 1. a weak acid, H_2CO_3
 2. a bicarbonate salt, NaHCO_3

$$\text{CO}_2 + \text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{CO}_3 \rightleftharpoons \text{H}^+ \text{HCO}_3^- + \text{Na}^+$$

Bicarbonate Buffer System Is the Most Important Extracellular Buffer
When a strong acid such as HCl is added to the bicarbonate buffer solution, the increased H+ released from the acid is buffered by HCO3−:

\[
\text{HCl} \rightarrow \text{H}^+ + \text{Cl}^{-}
\]

\[
\uparrow \text{H}^+ + \text{HCO}_3^- \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{CO}_2 + \text{H}_2\text{O}
\]

As a result, more H2CO3 is formed, causing increased CO2 and H2O production. From these reactions, one can see that H+ from the strong acid HCl reacts with HCO3− to form the very weak acid H2CO3, which in turn forms CO2 and H2O. The excess CO2 greatly stimulates respiration, which eliminates the CO2 from the extracellular fluid.
Alkalosis...adding NaOH

NaOH + H2CO3 → NaHCO3 + H2O

CO2 + H2O → H2CO3 → HCO3− + H+
+ +
NaOH Na

explanation

In this case, the OH− from the NaOH combines with H2CO3 to form additional HCO3 −.
Thus, the weak base NaHCO3 replaces the strong base NaOH.
At the same time, the concentration of H2CO3 decreases (because it reacts with NaOH), causing more CO2 to combine with H2O to replace the H2CO3.
Phosphate Buffer System

- plays a major role in buffering renal tubular fluid and intracellular fluids
- The main elements of the phosphate buffer system are H$_2$PO$_4^-$ and HPO$_4^{2-}$
- The phosphate buffer system has a pK of 6.8, which is not far from the normal pH of 7.4 in the body fluids
- phosphate usually becomes greatly concentrated in the tubules, thereby increasing the buffering power of the phosphate system
- the tubular fluid usually has a considerably lower pH than the extracellular fluid does, bringing the operating range of the buffer closer to the pK (6.8) of the system

Phosphate buffer is especially important in the tubular fluids of the kidneys

\[\text{H}_2\text{PO}_4^- \quad \text{HPO}_4^{2-} \]
When a strong acid such as HCl is added to a mixture of these two substances, the hydrogen is accepted by the base HPO_4^{2-} and converted to H_2PO_4^-

$$\text{HCl} + \text{Na}_2\text{HPO}_4 \rightarrow \text{NaH}_2\text{PO}_4 + \text{NaCl}$$

As a result, strong acid, HCl is replaced by an additional amount of a weak acid NaH$_2$PO$_4$, and the decrease in pH is minimized
Alkalosis...adding NaOH

NaOH + NaH2PO4 → Na2HPO4 + H2O

diagram

explanation

- strong base, NaOH, is traded for a weak base, NaH2PO4, causing only a slight increase in pH
Proteins: Important Intracellular Buffers

- The buffer systems within the cells help prevent changes in the pH of extracellular fluid but may take several hours to become maximally effective.

 There is a slight amount of diffusion of H^+ and HCO_3^- through the cell membrane, although these ions require several hours to come to equilibrium with the extracellular fluid, except for rapid equilibrium that occurs in the red blood cells.

 CO_2, however, can rapidly diffuse through all the cell membranes.

The pH in intracellular fluid is able to change when there are changes in extracellular pH.
Hemoglobin, human, adult (heterotetramer, (αβ)_2)

Structure of human hemoglobin. The protein's α and β subunits are in red and blue, and the iron-containing heme groups in green.
Hemoglobin (Hb) as an important buffer

\[\text{H}^+ + \text{Hb} \rightleftharpoons \text{HHb} \]

- In the red blood cell, hemoglobin (Hb) is an important buffer.
- Except for the red blood cells, the slowness with which \(\text{H}^+ \) and \(\text{HCO}_3^- \) move through the cell membranes often delays for several hours the maximum ability of the intracellular proteins to buffer extracellular acid-base abnormalities.
Respiratory regulation
CO2 production in metabolic intracellular processes

- diffusion from the cells into the interstitial fluids and blood
- blood transports it to the lungs
- diffusion into the alveoli and then transfer to the atmosphere by pulmonary ventilation

*** About 1.2 mol/L of dissolved CO2 normally is in the extracellular fluid, corresponding to a Pco2 of 40 mm Hg
Carbaminohemoglobin (or Carbaminohaemoglobin, also known as carbhemoglobin and carbohemoglobin) is a compound of hemoglobin and carbon dioxide, which is one of the forms in which carbon dioxide exists in the blood. Binding to carbon dioxide lowers hemoglobin's affinity for oxygen when carbaminohemoglobin is formed, via the Bohr Effect. When hemoglobin is not bound to oxygen, it has a higher tendency to become carbaminohemoglobin; this is known as the Haldane effect. Carbaminohemoglobin is blueish in color, so the veins, whose blood contains the compound, appears blue.

Binding of carbon dioxide in carbaminohemoglobin is not always agreed upon with certain biochemistry texts. 4 carbon dioxide molecules bind to hemoglobin. This binding does not occur at the same place as oxygen binding although 4 oxygen molecules do bind to hemoglobin. Other biochemistry texts suggest that carbon dioxide does not bind at all and is found only floating in the cytoplasm of the red blood cell. The need of further studies seems to be necessary.
Feedback Control of Hydrogen Ion Concentration by the Respiratory System

\[\uparrow [H^+] \rightarrow \uparrow \text{alveolar ventilation} \]

acts rapidly

keeps the H+ concentration from changing too much until the slowly responding kidneys can eliminate the imbalance

one to two times as great as the buffering power of all other chemical buffers in the extracellular fluid combined
if the H+ concentration is suddenly increased by adding acid to the extracellular fluid and pH falls from 7.4 to 7.0, the respiratory system can return the pH to a value of about 7.2 to 7.3.

This response occurs within 3 to 12 minutes.
Effect of blood pH on the rate of alveolar ventilation

Alveolar ventilation
Normal = 1

pH of arterial blood

pH

7.0 7.2 7.4 7.6
Renal Control
Kidneys

1. Renal pyramid
2. Interlobar artery
3. Renal artery
4. Renal vein
5. Renal hilum
6. Renal pelvis
7. Ureter
8. Minor calyx
9. Renal capsule
10. Inferior renal capsule
11. Superior renal capsule
12. Interlobar vein
13. Nephron
14. Minor calyx
15. Major calyx
16. Renal papilla
17. Renal column
The kidneys control acid–base balance by excreting either an acidic or a basic urine.

Excreting an acidic urine reduces the amount of acid in extracellular fluid, whereas excreting a basic urine removes base from the extracellular fluid.

Excretion of either an acidic or a basic urine.
Kidneys mechanism

Kidneys regulate extracellular fluid H+ concentration through three fundamental mechanisms:

1. secretion of H+
2. reabsorption of filtered HCO₃–
3. production of new HCO₃–
H+ secretion

- **normal conditions**

 The kidney tubules must secrete at least enough H+ to reabsorb almost all HCO3– that is filtered.

- **alkalosis**

 Tubular secretion of H+ must be reduced to a level that is too low to achieve complete HCO3– reabsorption, enabling the kidneys to increase HCO3– excretion.

- **acidosis**

 The tubular H+ secretion must be increase sufficiently to reabsorb all the filtered HCO3–.
Factors That Increase or Decrease H+ Secretion and HCO3– Reabsorption by the Renal Tubules

Increase H+ Secretion and HCO3– Reabsorption

- **PCO2**
- **H+, HCO3–**
- **Extracellular fluid volume**
- **Angiotensin II**
- **Aldosterone**
- **Hypokalemia**

Decrease H+ Secretion and HCO3– Reabsorption

- **PCO2**
- **H+, HCO3–**
- **Extracellular fluid volume**
- **Angiotensin II**
- **Aldosterone**
- **Hyperkalemia**
Production of new HCO₃⁻

- The amount of new bicarbonate contributed to the blood at any given time is equal to the amount of H⁺ secreted that ends up in the tubular lumen with nonbicarbonate urinary buffers e.g. NH₄⁺ and phosphate.

 ![Ammonium cation](image)

- In acidosis, there is a net addition of HCO₃⁻ back to the blood as more NH₄⁺ and urinary titratable acid are excreted.

- In alkalosis, there is a negative net acid secretion.
 - net loss of HCO₃⁻ from the blood (which is the same as adding H⁺ to the blood)
 - no new HCO₃⁻ is generated by the kidneys.
Clinical Causes of Acid–Base Disorders
Summarize of acid–base disturbances

Characteristics of Primary Acid–Base Disturbances

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>H+</th>
<th>PCO2</th>
<th>HCO3–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>7.4</td>
<td>40 mEq/L</td>
<td>40 mm Hg</td>
<td>24 mEq/L</td>
</tr>
<tr>
<td>Respiratory acidosis</td>
<td>↓</td>
<td>↑</td>
<td>↑↑</td>
<td>↑</td>
</tr>
<tr>
<td>Respiratory alkalosis</td>
<td>↑</td>
<td>↓</td>
<td>↓↓</td>
<td>↓</td>
</tr>
<tr>
<td>Metabolic acidosis</td>
<td>↓</td>
<td>↑</td>
<td>↓</td>
<td>↑↑</td>
</tr>
<tr>
<td>Metabolic alkalosis</td>
<td>↑</td>
<td>↓</td>
<td>↑</td>
<td>↓↓</td>
</tr>
</tbody>
</table>
Respiratory Acidosis

- Decreased Ventilation
- Increased PCO2

Remember!!!
Increased PCO2 dilatates cerebral vessels causing ↑ICP

damage the respiratory center | decrease the ability of the lungs to eliminate CO2

<table>
<thead>
<tr>
<th>vertebral column fracture</th>
<th>pneumonia</th>
</tr>
</thead>
<tbody>
<tr>
<td>brain trauma</td>
<td>emphysema</td>
</tr>
<tr>
<td>brain steam death</td>
<td>decreased pulmonary membrane surface area</td>
</tr>
<tr>
<td>intracranial haematoma</td>
<td>ARDS / IRDS</td>
</tr>
<tr>
<td>neuro-muscular disease</td>
<td></td>
</tr>
</tbody>
</table>
Respiratory Alkalosis

- Increased Ventilation
- Decreased PCO2
 - Controlled hyperventilation
 - Uncontrolled hyperventilation (mistakes in ventilator parameters by doctor or technician)
 - Overventilation by the lungs
 - Psychoneurosis
 - Sepsis
 - Pregnancy
 - Lung diseases
 - Severe anemia
 - Liver insufficiency

PaCO2 < 36 mmHg

↓H⁺

↑pH
Metabolic acidosis

- Decreased extracellular fluid bicarbonate concentration
- Defect in renal secretion of H+
- Defect in reabsorption of HCO$_3$–
 - failure of the kidneys to excrete metabolic acids normally formed in the body
 - formation of excess quantities of metabolic acids in the body
 - addition of metabolic acids to the body by ingestion or infusion of acids
 - loss of base from the body fluids, which has the same effect as adding an acid to the body fluids
 - Diarrhea
 - Vomiting of intestinal contents
 - Diabetes mellitus
 - Chronic kidney disease

Remember!!!
The risk of death from pH=7.2
Lactic acidosis

- Lactates are produced during anaerobic metabolism of glucose

- Normal plasma values: 1 mmol/l during maximal physical activity could rise to 20 mmol/l

- The most important acidosis among critically ill patients in ICU’s

 very prognostic value depending on the MOF (Multi Organ Failure) and Poor Outcome
Lactic Dehydrogenase

$\text{CH}_3 \text{--CH--COOH}$ \xrightarrow{Lactic Dehydrogenase} $\text{CH}_3 \text{--C--COOH}$

OH

$\text{NADH}+\text{H}^+$ \xrightarrow{} NAD^+
Clinical course of lactic acidosis

- **Type A: severe hypoperfusion**
 - severe multiple trauma
 - sepsis
 - heart insufficiency
 - haemorrhage or severe anemia
 - CO intoxication
 - epilepsy grand mal
 - pheochromocytoma

- **Type B: without hypoperfusion**
 - uraemia
 - liver insufficiency
 - diabetes mellitus
 - sepsis
 - cancer
 - intoxication: ethanol, methanol, adrenaline, terbutaline...
Clinical study – stress adult reaction leads into the severe multiple trauma (SIRS and MOF)

Lactate plasma concentration

Normal values 0.63-2.44 mmol/l

Grupa I Grupa II

0 1 2 3 4 5 6
Clinical study – stress adult reaction leads into the severe multiple trauma (SIRS and MOF)

Plasma pH
Clinical study – stress adult reaction into the severe multiple trauma (SIRS and MOF)

Correlation between MOF and lactate concentration

MOF – YES MOF – NO
Metabolic alkalosis

- excess retention of HCO₃⁻
- loss of H+ from the body
 - administration of diuretics (except the carbonic anhydrase inhibitors)
 - excess aldosterone
 - diarrhea
 - vomiting of gastric contents
 - ingestion of alkaline drugs
 - after compensation of chronic hypokalemia
 - Severe hypokalemia

pH > 7.4
HCO₃⁻ > 26 mmol/l
BE > 2
PaCO₂ increases 0.7 mmHg for every 1 mmol/l of increasing HCO₃⁻ in plasma
Acid–Base Balance Monitoring
Analysis of simple acid–base disorders

Arterial blood sample

pH

< 7.4

Acidosis

Metabolic

Respiratory

Respiratory compensation

Renal compensation

> 7.4

Alkalosis

Metabolic

Respiratory

Respiratory compensation

Renal compensation
Diagnosis

Appropriate therapy of acid–base disorders requires proper diagnosis
Arterial blood gases analysis

1. pH
2. Plasma bicarbonates concentration
3. PaCO2
4. BE (Base excess)
Important steps

1. **Step**
 pH assessment
 - < 7.4 means acidosis
 - > 7.4 means alkalosis

2. **Step**
 pCO2 assessment
 HCO3– assessment

3. **Step**
 * assessment if disturbance could be metabolic acidosis or alkalosis
 ** assessment if disturbance could be respiratory acidosis or alkalosis
 *** ...
In simple metabolic acidosis, one would expect to find a low pH, a low plasma HCO3– concentration, and a reduction in PCO2 after partial respiratory compensation.
Treatment

The aims of therapy
1. correction of acidosis
2. elimination of the cause

Ad1.
is necessary to administer basic fluids if pH below 7.15–7.20
bicarbonates – i.v.

\[\text{mmol} = \text{BE} \times 0.3 \times \text{kg b.w.} \]

Remember 1 ml of 8.4% HCO3=1 mmol HCO3–

first only correction to increase pH above 7.2

complications
increase of Na
hyperosmolarity
increase of PaCO2 and intracellular acidosis
left shift of oxygen–hemoglobin dissociation curve
Treatment

Ad1
i.v. TRIS Buffer (THAM, Trometamol)

connects the H+ and decrease PaCO2

remember

* TRIS is without Na – indication in hypernatremia
* causes respiratory depression (decrease PaCO2)
 – contraindication among the patient with himself ventilation

\[\text{ml} = \text{BE} \times 0.3 \times \text{kg b.w.} \]
Max speed of i.v. – 10 ml/min
Max dose 750 ml / 24 hours
Example of... Respiratory acidosis

pH = 7.29
pCO2 = 52 mmHg
HCO3 = 28 mmol/l

expected values for a simple respiratory acidosis would be reduced plasma pH, increased PCO2, and increased plasma HCO3– concentration after partial renal compensation.
Treatment

- Acute
 1. remove the cause of respiratory insufficiency
 2. oxygenation
 3. mechanical ventilation

- Chronic
 1. long lasting therapy
 2. be very careful in mechanical ventilation – you could never disconnect the patient…
Example of... **Respiratory alkalosis**

\[
\begin{align*}
pH &= 7.51 \\
pCO2 &= 24 \text{ mmHg} \\
\text{after several hours increased } &\text{HCO}_3^- \\
\end{align*}
\]

simple respiratory alkalosis, one would expect to find increased pH, decreased PCO2
Treatment

Is necessary if pH is above 7.55

1. remove the cause
 for example change the parameters in the ventilator
 if hypoxemia is present try to treat the basic disturbance
 ...

Example of... **Metabolic alkalosis**

\[
\begin{align*}
\text{pH} &= 7.55 \\
\text{HCO}_3^- &= 33 \text{ mmol/l} \\
p\text{CO}_2 &= 56 \text{ mmHg}
\end{align*}
\]

In simple metabolic alkalosis, one would expect to find increased pH, increased plasma HCO$_3^-$, and increased PCO$_2$
Treatment

You have time to correct the metabolic alkalosis

1. Diagnosis and cause treatment
2. ↓ CL– i.v. NaCl, KCl, HCL – only severe alkalosis
New concept of treatment critically ill patients
Influence of pH and PCO2 on oxygen–hemoglobin dissociation curve

Normal condition

arterial point
oxygen saturation of systemic arterial blood averages 97 per cent

venous point
the saturation of hemoglobin averages 75 per cent
Influence of pH and PCO2 on oxygen–hemoglobin dissociation curve

Saturation is percentage of hemoglobin bound with oxygen
1g Hb = 1.34 ml O2

Shift to right:
1. Increased hydrogen ions
2. Increased CO2
3. Increased temperature
4. Increased BPG

Saturation is percentage of hemoglobin bound with oxygen
1g Hb = 1.34 ml O2

Shift to right:
1. Increased hydrogen ions
2. Increased CO2
3. Increased temperature
4. Increased BPG

Ryc. 12.2 Wpływ wartości pH, temperatury krwi, pCO2 i stężenia 2,3 – DPG na stopień saturacji O2 i na wartość p50 krwi (Matthys, 1988; zmodyfikowano).
- Shift to the right: the amount of O2 connected with hemoglobin at accurate PO2 is decreased.

- Shift to the left: at accurate PO2 the bigger amount of O2 is connected with hemoglobin and O2 is also released more difficult.
Consequences of right shift the curve – Bohr effect

- **Tissues**
 forcing oxygen away from the hemoglobin and delivering increased amounts of oxygen to the tissues

 As the blood passes through the tissues, carbon dioxide diffuses from the tissue cells into the blood. This increases the blood Po2, which in turn raises the blood H2CO (carbonic acid) and the hydrogen ion concentration.

- **Lungs**
 quantity of oxygen that binds with the hemoglobin at any given alveolar Po2 becomes considerably increased, thus allowing greater oxygen transport to the tissues.

 Carbon dioxide diffuses from the blood into the alveoli and reduces the blood Pco2 and decreases the hydrogen ion concentration, shifting the oxygen–hemoglobin dissociation curve to the left.
What do you want to do?

Enter new data:

Please, please be careful choosing the units, especially for PCO_2 and albumin! (choosing the wrong units leads to grossly false results)

(test data will be deleted from time to time)

or

register and calculate osmolality-related data only (minimal data required: Na, glucose; better with urea, K and osmolality measured with the freeze-point method, best with a full acid-base and electrolyte dataset)

this part of the scripts is under development right now - be patient with imperfections

or

take a look at existing data:
The Stewart model predicts that changes in the proportion of anions and cations will result in changes in pH. So we will have to change our definitions of acids and bases. Stewart hypothesized that water dissociates into H+ and OH- to a greater or a lesser extent when [SID], [ATOT] or PCO2 change.

But the Stewart hypothesis has no empiric support.

Although experience is the only judge of scientific theories, scientific knowledge does not exclusively arise from experience.

Throughout this book, we refer to the Stewart hypothesis as a ready explanation for the observed association between the variables [SID], [ATOT] and PCO2 and the variable pH. We recognize that this theoretic construct is only one of a number of possible explanations.
Summary

- Increased PCO₂
- Decreased pH (acidosis)
- Fever
- Anemia (increased 2,3-DPG)

Easier O₂ releasing in the tissues and better connection in the lungs

- Decreased PCO₂
- Alkalosis
- Hypothermia
- Decreased 2,3-DPG

More difficult O₂ releasing in the tissues
Thank You for Your Attention