Blood cells

Magdalena Gibas – Dorna MD, PhD
Dept. of Physiology
University of Medical Sciences
Poznań, Poland
Functions of the blood

- **Delivers nutrients** from the digestive system to all parts of the body
- **Transports oxygen** from the lungs to all parts of the body
- **Transports carbon dioxide** from all parts of the body to the lungs
- **Transports waste products** from cells to the external environment mainly via the kidneys
- **Transports hormones** from the endocrine system to target cells or organs within the body.
Functions of the blood

- Through continuous exchange of its components with tissue fluids promotes **fluid and electrolyte balance**
- Defends the body against attack from foreign organisms via the white blood cells and antibodies
- Defends the body against injury or infection via the *inflammatory response*
- Prevents serious hemorrhage by the *clotting process*
- Maintains the body's **temperature** by circulating heat
Composition of the blood

- The blood is a mixture of cells, fluid, proteins and metabolites.
- Blood has four major elements:
 - **red blood cells** (transport oxygen from the lungs to organs and peripheral sites; water-base buffer)
 - **white blood cells** (have a defensive role in destroying invading organisms e.g. bacteria and viruses)
 - **platelets** (the first line of defence against damage to blood vessels)
 - **plasma** (the proteinaceous substance in which the other three elements circulate)
Formation of blood cells

Hemopoiesis
Hemopoietic cells (those which produce blood) first appear in the yolk sac of the 2-week embryo.

By 8 weeks, blood making has become established in the liver of the embryo, and

by 12-16 weeks the liver has become the major site of blood cell formation. It remains an active hemopoietic site until a few weeks before birth.

The spleen is also active during this period, particularly in the production of lymphoid cells, and

the fetal thymus is a transient site for some lymphocytes.
Development of Marrow

- The highly cellular bone marrow becomes an active blood making site from about 20 weeks gestation and gradually increases its activity until it becomes the major site of production about 10 weeks later.

- At birth, active blood making red marrow occupies the entire capacity of the bones and continues to do so for first 2-3 years after birth.
Development of Marrow

- The red marrow is then very gradually replaced by inactive, fatty, yellow, lymphoid marrow.
- The yellow marrow begins to develop in the shafts of the long bones and continues until (by 20-22 years) red marrow is present only in the upper ends of the femur and humerus and in the flat bones.
- Total amount of active red marrow is nearly identical in the child and the adult.
Bone Marrow

- Bone marrow is composed of 2 compartments:
 a. Extravascular
 b. Intravascular
- The central venous sinusoid has a permeable basement membrane
- Red cells squeeze into the sinusoidal lumen, leaving their nuclei behind in the cellular matrix.
- Mature blood cells (from bone marrow) are attracted to the site of migration by chemotactic factors
Red Marrow Function

- About two-thirds of its mass functions in white cell production (*leucopoiesis*), and one-third in red cell production (*erythropoiesis*).

- However there are approximately 700 times as many red cells as white cells in peripheral blood.
Distribution of active marrow

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>% of TOTAL MARROW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelvis</td>
<td>40</td>
</tr>
<tr>
<td>Vertebrae</td>
<td>28</td>
</tr>
<tr>
<td>Cranium-mandible</td>
<td>13</td>
</tr>
<tr>
<td>Ribs</td>
<td>8</td>
</tr>
<tr>
<td>Sternum</td>
<td>2</td>
</tr>
<tr>
<td>Ends of long bones</td>
<td>8</td>
</tr>
</tbody>
</table>
Bone Marrow

- Examination of the marrow is usually done by **needle biopsy** of the iliac crest under local anesthesia. (The other possible biopsy site is the anterior superior iliac spine.)

- The procedure involves first aspirating some of the jelly-like marrow substance and smearing it onto a glass slide.
Normal bone marrow smear. Note the presence of erythroid precursors and granulocytic precursors.
Aplastic "Empty" Bone Marrow

Normal Bone Marrow
- **Leukemia** results in a highly cellular marrow. The marrow consists of leukemic cells of acute lymphocytic leukemia (ALL) that have virtually replaced or suppressed normal hemopoiesis.

- Thus, though the marrow is quite cellular, there can be **peripheral cytopenias**.

- This explains the complications of infection, hemorrhage, and anemia that often appear with leukemia.
Myelofibrosis

- Myelofibrosis: increased collagen, the type familiar as a scar.
- This change is usually irreversible, as with any scar. The marrow cannot be aspirated.
Hematopoietic System

- Number of blood cells in the blood stream depends on three factors:
 - Rate of production
 - Rate of release
 - Length of survival
Erythropoiesis

- The **pluripotential stem cell** is defined as the precursor cell from which all erythrocytes, leukocytes, and megakaryocytes are formed (i.e. all blood cells have a **common cell line of origin**).

- These stem cells
 - are very rare (only about one in 10,000 bone marrow cells)

- produce, by mitosis, two kinds of progeny:
 - more stem cells
 - cells that begin to differentiate along the paths leading to the various kinds of blood cells
Uncommitted stem cell gives rise to committed cells

- proerythroblast
- monoblast
- myeloblast
- lymphoblast
- megakaryoblast

- basophilic erythroblast
- erythroblast
- normoblast
- reticulocyte

- promyelocyte
- [a]
- [b]

- neutrophil
- basophil
- eosinophil
- lymphocyte
- platelets
The process of erythrocyte development are characterised by:

- the gradual appearance of hemoglobin and disappearance of ribonucleic acid (RNA) in the cell,
- the progressive degeneration of the cell's nucleus which is eventually extruded from the cell,
- the gradual loss of cytoplasmic organelles, for example mitochondria,
- a gradual reduction in cell size
The formation of **RBC**

- **Proerythroblast** *(aerobic metabolism, many cytoplasmic organelles)*
- **Basophil erythroblast** *(beginning of the globin synthesis and Fe incorporation; rich in RNA)*
- **Polychromatophil erythroblast** *(last proliferative cell; ↑ rate of Hb synthesis)*
- **Normoblast; acidophil erythroblast** *(anaerobic metabolism; pyknotic nucleus)*
- **Reticulocyte** *(network of ribonucleic acid. As the red cell matures the reticulum disappears)*
- **Erythrocyte**
Reticulocytes

- Between 2 and 6% of a new-born baby's circulating red cells are reticulocytes, but this reduces to less than 2% of RBCs in the healthy adult.
- Reticulocyte count increases in conditions in which rapid erythropoiesis occurs.
- A reticulocyte normally takes 2-4 days to mature into an erythrocyte.
Normoblastic reaction of bone marrow

- Normally **normoblastic renewal** amounts to **12-25%** of all **nucleated** cells in the bone marrow.

- Percentage of erythroblasts increases with their maturity (**most of normoblasts**; **less proerythroblasts**)

- ↑ **requirement** – renewal increases to 30%-50%, and even more, there is also increase in percentage of immature cells – **normoblastic reaction with shift to the left** (**normoblasts in blood stream**).
- the biconcave shape increases the cell's surface area and facilitates diffusion of \(\text{O}_2 \) and \(\text{CO}_2 \) into or out of the cell

- the lack of nuclei and organelles contribute to increased Hb content and gas-carrying capacity

- normal erythrocytes must be very flexible. They become deformed when flowing through capillaries and narrow pores (slits) in the spleen
Red Blood Cells

- Normal adult ranges: men 4.5-6.0 T/L; women 3.8-5.2 T/L
- All red blood cells have a limited life span of around 100 to 120 days
- Aged RBC's are removed by the spleen, liver and the bone marrow
- Spleen, liver, and marrow macrophages recognize and ingest old RBCs
- Heme is converted to bilirubin;
- Bound bilirubin is transported to the liver, where it is converted into bile salt
- Small intestine bacteria convert bilirubin into the urobilinogen, most of which is eliminated in the feces in the form of stercobilin
- Some urobilinogen is absorbed from the intestine and excreted with urine, where it becomes oxidized to urobin
Hemoglobin (Hb) carries O\textsubscript{2}, CO\textsubscript{2}; is a buffer; reduced Hb binds 4 O\textsubscript{2} \rightarrow \text{oxyhemoglobin}.

In adults:
- 96% type A1 (2α+2β chains)
- 2% type A2 (2α+2δ chains)
- 2% type F (2α+2γ chains)
Fetal hemoglobin

- **In fetus**: Hb type F (2α+2γ chains) predominates; HbF has greater affinity to O2

- After birth replaced by HbA

- By the time the child is 6 months old, the replacement is nearly complete
Hemoglobinopathies

- Minor variations in the amino acid sequence or composition of:
 - α chain e.g. Hemoglobin H disease
 - β chain e.g. Sickle cell disease (Hb type S)

Oxyhemoglobin S, like normal Hb, is soluble in the ICF; however HHb S is insoluble, forming fibrous precipitates of sickle shape. Sickle cells are destroyed faster and may be trapped in capillaries.
Anemias

- Abnormally low oxygen-carrying capacity of the blood resulting from deficiency in the number of:
 - RBC,
 - Hb,
 - or both

- Anemia is considered to be present if Hb is less than 12g/dL (norm: men 13-17g/dL, women 12-16 g/dL)
Acute blood loss → hemorrhagic anemia (normocytic, normochromic).

B12 or/and folate deficiency → megaloblastic anemia (macrocytic, hyperchromic, immature RBC).

Fe deficiency → microcytic, hypochromic anemia

Hemolytic anemia → increased rate of RBCs destruction (normocytic)

Genetic abnormality/chemical exposure → aplastic anemia (lack of RBC production)
Signs and symptoms of anaemia

CNS
- Debilitating fatigue
- Dizziness, vertigo
- Depression
- Impaired cognitive function

Immune system
- Impaired T cell and macrophage function

Cardiorespiratory system
- Exertional dyspnoea
- Tachycardia, palpitations
- Cardiac enlargement, hypertrophy
- Increased pulse pressure, systolic ejection murmur
- Risk of life-threatening cardiac failure

Gastro-intestinal system
- Anorexia
- Nausea

Genital tract
- Menstrual problems
- Loss of libido

Vascular system
- Low skin temperature
- Pallor of skin, mucous membranes and conjunctivae

Adapted from Ludwig H, Fritz E. Semin Oncol. 1998;25(suppl 7):2-6.
Red blood cells contain several hundred hemoglobin molecules which transport oxygen.

Oxygen binds to heme on the hemoglobin molecule.
How many Hb molecules in one RBC?

- More than 250 million molecules!!!
RBC indexes

- **MCHC** - mean corpuscular hemoglobin concentration (norm: 34%/RBC)
- **MCV** - mean corpuscular volume (norm: 78-95fL)
- **MCH** - mean corpuscular hemoglobin index - Hb mass within RBC (norm: 29pg/RBC)
Regulation of erythropoiesis

- Hormones and lymphokines (erythropoietin, BPA interleukins, ACTH, TSH, thyroid hormones, glucocorticoids, testosterone etc.)
- Vitamins (B12, folic acid, B6)
- Metals (Fe, Co, Cu, Mn, Zn)
Erythropoietin is synthesized in the juxtaglomerular cells of the kidneys and is released into the blood in response to hypoxia in the renal arterial blood supply.

Erythropoietin is a glycoprotein. It is inactivated by the liver and excreted in the urine.

About 10% of EPO is synthesized in other tissues.
Low blood O_2 → kidneys release erythropoietin → increased erythropoiesis
Hormones affecting erythropoiesis

- adrenocorticotropic hormone (ACTH),
- human growth hormone (GH)
- thyroid-stimulating hormone (TSH),
- thyroid hormones (T3, T4),
- adrenal cortical steroids (cortisol),

all promote erythropoietin formation
Hormones affecting erythropoiesis

- **Androgens** stimulate and **estrogens** depress the erythropoietic response.

 *In addition to the effects of menstrual blood loss, this effect may explain why women tend to have a lower hemoglobin concentration and *RBC* count than men.*

- Erythropoietin is also produced by a variety of tumours of both renal and other tissues.
Dietary requirements for sufficient red blood cell production

<table>
<thead>
<tr>
<th>Dietary element</th>
<th>Role in red blood cell production</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>Required to make red blood cell proteins and also for the globin part of hemoglobin</td>
</tr>
<tr>
<td>Vitamin B<sub>6</sub></td>
<td>It plays role in heme synthesis</td>
</tr>
<tr>
<td>Vitamin B<sub>12</sub> and folic acid</td>
<td>Needed for DNA synthesis and are essential in the process of red blood cell formation</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>Required for folate metabolism and also facilitates the absorption of iron. Extremely low levels of Vitamin C are needed before any problems occur. Anemia caused by lack of Vitamin C (scurvy) is now extremely rare</td>
</tr>
<tr>
<td>Iron</td>
<td>Required for the heme part of hemoglobin</td>
</tr>
<tr>
<td>Copper and Cobalt (heme synthesis, EPO)</td>
<td>There are some reports suggesting that these two minerals are essential for the production of red blood cells in other animals but not in humans</td>
</tr>
</tbody>
</table>
Iron Turnover

Iron absorption is greatest in the duodenum and decreases progressively as one moves distally down the intestine.

Iron is much more readily absorbed in its ferrous (Fe$^{2+}$) form than in its ferric (Fe$^{3+}$) form.

Vitamin C can increase iron absorption by serving as a reducing agent to maintain iron as Fe$^{2+}$.
Factors that increase or decrease the absorption of iron

Increased Iron Absorption:
- Anemia
- Iron-deficiency state
- Increased erythropoiesis
- Ascorbic acid
- High altitude

Decreased Iron Absorption:
- Malabsorption diseases
- Transfusion
- Polycythemia
- Increased iron stores
- Fever
Iron in organism

- 65-75% in Hb
- About 13% in ferritin
- About 12% in hemosiderin
- About 5% in mioglobin
- <1% in enzymes (catalase, cytochromes)
- <1% in transferrin

Spleen, iron in macrophages
Microcytosis due to iron deficiency

Reasons for iron deficiency:
- Chronic blood loss
- Inadequate intake
- Increased need: Growing children and pregnant women (children under 2 are almost always iron deficient)

Brittle nails
The RBC's here are smaller than normal and have an increased zone of central pallor. This is indicative of a hypochromic (less hemoglobin in each RBC) microcytic (smaller size of each RBC) anemia. There is also increased anisocytosis (variation in size) and poikilocytosis (variation in shape).
Normal vs. low iron
Vitamin B12 and folic acid

Vitamin B12 is important for metabolism, the formation of red blood cells, and the maintenance of the central nervous system, which includes the brain and spinal cord.

Folic acid is necessary for red blood cell production and neural tube formation.

Brain
Spinal cord
Red blood cells
Neural tube
In the stomach, B12 is released from food and bound to IF secreted by the gastric parietal cells.

The B12-IF complex continues down the digestive tract. In the ileum, IF-B12 binds to luminal membrane receptors and is absorbed into the cell.

Once in the ileal mucosal cell, B12 separates from IF and is bound to its transport protein, TCII.

TCII carries B12 to the various tissues of the body (especially liver and bone marrow).

Key
- IF = Intrinsic Factor
- R = membrane bound receptor
- TCII = Transcobalamin II

Bone marrow

Liver

Body tissue stores
Megaloblastic anemias

- When vitamin B_{12} or folate is deficient, DNA synthesis is interrupted. This leads to megaloblastic changes (macrocytosis). There is often erythroid hyperplasia in the marrow but most of these immature cells die before reaching maturity.

- The lack of DNA synthesis affects the neutrophils leading to nuclear hypersegmentation.

- Often a mild pancytopenia is seen but thrombocytopenia can be severe.

Hemorrhagic spots
Neurologic symptoms may include:

- Impaired perception of deep touch and vibration
- Present Babinski reflex
- Paresthesias (feeling of "pins and needles")
- Dementia in severe cases
Markedly increased **MCV** *(mean corpuscular volume)* is typical for megaloblastic anemia.

Citric color of skin
Factors responsible for B12 and folic acid deficiency

<table>
<thead>
<tr>
<th>Factor</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiency of B12: & #2013;& #2013; Diet</td>
<td>Vegetarianism (rarely), old people</td>
</tr>
<tr>
<td>& #2013;& #2013; Malabsorption diseases</td>
<td>Crohn disease, resection of ileum, others</td>
</tr>
<tr>
<td>Deficiency of folic acid: & #2013;& #2013; Diet</td>
<td>Alcoholism; old people</td>
</tr>
<tr>
<td>& #2013;& #2013; Malabsorption diseases</td>
<td>Crohn disease</td>
</tr>
<tr>
<td>& #2013;& #2013; ↑requirement</td>
<td>Pregnancy</td>
</tr>
<tr>
<td>& #2013;& #2013; pharmacology</td>
<td>Drugs for epileptics</td>
</tr>
</tbody>
</table>
Polycythaemia (excess red blood cell production)

- RBCs > 6.0 T/L, ↑ HCT and HGB
- Reasons:
 - primary (cancer of myeloid tissue)
 - secondary increase in EPO synthesis (high altitude, chronic lung disease, smoking)
 - pathological increase of EPO (kidney diseases, liver tumors)
Normal values of some haematological parameters (CBC – complete blood count)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin (HGB)</td>
<td>men: 13-17 g/dL</td>
</tr>
<tr>
<td></td>
<td>women: 12-16 g/dL</td>
</tr>
<tr>
<td>Red cell count (RBC)</td>
<td>men: 4.5-6.0 T/L</td>
</tr>
<tr>
<td></td>
<td>women: 3.8-5.2 T/L</td>
</tr>
<tr>
<td>Mean corpuscular volume (MCV)</td>
<td>78-95 fL/RBC</td>
</tr>
<tr>
<td>Hematocrit (PCV)</td>
<td>men: 40-52%</td>
</tr>
<tr>
<td></td>
<td>women: 37-47%</td>
</tr>
<tr>
<td>Reticulocytes</td>
<td>0.2-2.0%</td>
</tr>
<tr>
<td>White cells count (WBC)</td>
<td>4-11 G/L</td>
</tr>
<tr>
<td>Platelets (PLT)</td>
<td>150-400 G/L</td>
</tr>
</tbody>
</table>
Analyze CBC test results – are they normal?

<table>
<thead>
<tr>
<th>WBC</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>NE</td>
<td>52.6</td>
<td>3.6</td>
</tr>
<tr>
<td>LY</td>
<td>36.7</td>
<td>2.5</td>
</tr>
<tr>
<td>MO</td>
<td>7.8</td>
<td>0.5</td>
</tr>
<tr>
<td>EO</td>
<td>2.5</td>
<td>0.2</td>
</tr>
<tr>
<td>BA</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>RBC</td>
<td>5.29</td>
<td></td>
</tr>
<tr>
<td>HGB</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>HCT</td>
<td>47.0</td>
<td></td>
</tr>
<tr>
<td>MCV</td>
<td>88.8</td>
<td></td>
</tr>
<tr>
<td>MCH</td>
<td>30.7</td>
<td></td>
</tr>
<tr>
<td>MCHC</td>
<td>34.5</td>
<td></td>
</tr>
<tr>
<td>PLT</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>MPV</td>
<td>8.4</td>
<td></td>
</tr>
</tbody>
</table>
Analyze CBC test results - are they normal?

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td>5.5 %</td>
</tr>
<tr>
<td>NE</td>
<td>54.7 %</td>
</tr>
<tr>
<td>LY</td>
<td>34.1 %</td>
</tr>
<tr>
<td>MO</td>
<td>7.5 %</td>
</tr>
<tr>
<td>EO</td>
<td>3.0 %</td>
</tr>
<tr>
<td>BA</td>
<td>0.7 %</td>
</tr>
<tr>
<td>RBC</td>
<td>4.28 L</td>
</tr>
<tr>
<td>HGB</td>
<td>9.7 L</td>
</tr>
<tr>
<td>HCT</td>
<td>29.9 L</td>
</tr>
<tr>
<td>MCV</td>
<td>69.7 L</td>
</tr>
<tr>
<td>MCH</td>
<td>22.6 L</td>
</tr>
<tr>
<td>MCHC</td>
<td>32.4 L</td>
</tr>
<tr>
<td>PLT</td>
<td>331</td>
</tr>
<tr>
<td>MPV</td>
<td>8.8</td>
</tr>
</tbody>
</table>
Granulopoiesis
Granulopoiesis

- Granulocytes is the collective name given to three types of WBC. Namely these are: neutrophils, basophils and eosinophils.
- In terms of their formation (granulopoiesis) they all derive from the same type of precursor cells called myeloblasts.
- After birth and into adulthood granulopoiesis occurs in the red marrow.
Granulopoiesis

The process of producing granulocytes is characterised by:

- the progressive condensation and lobulation of the nucleus,
- loss of RNA and other cytoplasmic organelles, for example mitochondria,
- the development of cytoplasmic granules.
Factors affecting granulopoiesis

- **Sympathetic system** increases granulopoiesis
- **ACTH and glucocorticoids** increase count of neutrophils and decrease count of eosinophils, lymphocytes and basophils
- **Thyroid hormones, pituitary hormones, adrenal hormones and estrogens** – increase granulopoiesis
- **Positive feedback** – products of WBCs degradation
Normal neutrophil renewal in bone marrow amounts to 60-70% of all nucleated cells in the bone marrow. Percentage of neutrophils increases with their maturity (most of mature neutrophils; less myeloblasts).
The RBC's in the background appear normal. The important finding here is the presence of many PMN's. An elevated WBC count with mainly neutrophils suggests inflammation or infection. A very high WBC count (>40G/L) that is not a leukemia is known as a "leukemoid reaction". This reaction can be distinguished from leukemia by the presence of large amounts of leukocyte alkaline phosphatase (LAP) in the neutrophils.
Here are very large, immature myeloblasts typical for acute myelogenous leukemia (AML) that is most prevalent in young adults.
Granulocytes

- In the circulation, about 50% of granulocytes adhere closely to the internal surface of the blood vessels. These are called **marginal cells** and are not normally included in the white cell count.

- The other half circulate (**circulating cells**) in the blood and exchange with the marginal population.

- Within hours granulocytes may leave the circulation in response to specific requirements for these cells in the tissues.

- They may survive in the tissues for **4 or 5 days**, or less, depending on the conditions they meet.
There are five main types of white blood cells (**Schilling’s count**):

- neutrophils 45-65 %
- eosinophils 1-4 %
- basophils 0.5-1 %
- lymphocytes 20-40 %
- monocytes 3-8 %
Neutrophils

- Neutrophils are the most common granulocytes. They have segmented or rod-shaped nuclei, typically with 2 to 5 lobes ("segments", "bands")
- They are motile, can change their shape and are actively **phagocytic**
- The cytoplasm of neutrophils contains three types of granules

45-65%

2 neutrophils: with rod-shaped nucleus (band neutrophil) and segmented nucleus (segment)
Neutrophils

- **Primary granules** are non-specific and contain lysosomal enzymes, and some lysozyme. The granules are similar to lysosomes.

- The enzymes (MPO) produce **hydrogen peroxide**
Oxygen-dependent killing

- Respiratory (oxidative) burst
- Molecular oxygen reduced to a range of intermediates:
 - superoxide anion
 - hydrogen peroxide
 - hypochlorite anions
 - singlet oxygen
 - hydroxyl radicals

they are powerful antibacterial agents
Oxygen-independent killing

- **Lysozyme** destroys bacterial cell walls
- **Cationic proteins** cause pH to fall
- **Acid hydrolase** enzymes degrade carbohydrates, proteins, lipids, and nucleic acids
Neutrophils

- **Secondary granules** are specific to neutrophils. They contain **collagenase**, to help the cell move through connective tissue, and **lactoferrin**, which is toxic to bacteria and fungi.

- **Tertiary granules** may produce **proteins** which help the neutrophils to stick to other cells.
Neutrophils are phagocytes that can exit the bloodstream (diapedesis) and travel to inflammation.
In the area of infection neutrophils respond to chemicals and move towards the area of highest concentration (migration and chemotaxis).

Neutrophils respond to chemotactic signals (such as soluble bacterial products, complement components or cytokines) via directional migration to the place of inflammation they undergo activation (preparation for degranulation and release of lysosomal enzymes)
Phagocytosis

1. Attraction

- bacterium
- lysosome
- nucleus

phagocyte
Phagocytosis

2. Attachment of the bacterium to the long membrane evaginations, called pseudopodia.
Phagocytosis

3. Ingestion of the bacterium forming a "phagosome," which moves toward the lysosome.
4. Fusion of the lysosome and phagosome, releasing lysosomal enzymes into the phagosome.
Phagocytosis

5. Digestion of the ingested material.
Phagocytosis

6. Release of digestion products from the cell
Neutrophils get to an infection early in large numbers, ingest microbes, die, and damage tissue.
Types of phagocytic cells

- **NEUTROPHILS** (polymorfonuclear)
 - most common/active
 - first to side of injury
 - short lived (4-5 days)

- **EOSINOPHILS**
 - allergic responses
 - parasitic worms

- **MONOCYTES**
 - develop into macrophages

- **Wandering MACROPHAGES**
 - travel as monocytes
 - chemotaxis during inflammation

- **Fixed MACROPHAGES**
 - lymph nodes, spleen, most organs (e.g. skin, brain, liver, kidneys)
 - long lived (months to years)
Eosinophils
1-4%

- bi-lobed nucleus
- they increase greatly in many types of parasitic infection and defence against the larvae of parasitic worms and unicellular organisms
- they also increase in number in some allergic states (they neutralise the effect of histamine)
Eosinophils - properties

- The lysosomes contain oxidase, peroxidase and phosphatases
- Eosinophils exhibit chemotaxis;
- They respond to eosinophilic chemotactic factors released by basophils
- Their attraction depends on the presence of antibodies specific to foreign proteins (phagocytosis of Ag-Ab complexes)
The granules of eosinophils contain a substance called MBP (major basic protein) which is toxic to many parasitic larvae.

Eosinophils also have surface receptors for the antibody: immunoglobulin E (IgE).

These receptors are not found in neutrophils and again this is thought to reflect their role in parasitic infection.
Function of eosinophils - summary

- they regulate allergic reactions
- they defend against parasitic infections
- they participate in antigen presentation (for antibodies synthesis)
- they play role in hemostasis (plasminogen)
Basophils
0-1%

- characterised by their large cytoplasmic granules, and very little cytoplasm
- actually become mast cells on leaving the blood and entering surrounding tissues
- both basophils and mast cells have highly specific receptors for IgE produced in response to various allergens
- basophils are not phagocytic cells!!!
Basophils

- Response to specific allergens is rapid and results in degranulation and release of histamine and other agents (among them SRS-A, heparin). The reaction known as immediate hypersensitivity.
- Fever, some forms of asthma, urticaria (nettle rash) and most seriously anaphylactic shock.
Allergen degradation

Degradation of allergen by macrophages, presentation to T-cells and B-cells, and production of IgE which causes histamine basophil release
There is a basophil in the center of the field which has a lobed nucleus (like PMN's) and dark blue granules in the cytoplasm. A band neutrophil is seen on the left, and a large, activated lymphocyte on the right.
Basophil function - summary

- facilitate cell migration to the site of inflammation
- participate in allergic reactions
- modulate blood clotting and lipid profile (via heparin)
Monocytes
3-8%

- the largest cell type seen in blood smears
- nuclei are not multilobular like granulocytes, but may be U-shaped or deeply indented (S-shaped)
- Monocytes are actively phagocytic
- Monocytes can migrate out of the bloodstream and become tissue macrophages
- they form part of a cell network known as the monocyte-macrophage system
PLURIPOTENTIAL HEMATOPOIETIC STEM CELL

(COLONY FORMING UNITS) MYELOID PROGENITOR CELLS

CFU-GM

CFU-M

Monoblast

Promonocytes

Monocytes

In tissue macrophages
- Tissue macrophages (sometimes called histiocytes) respond more slowly than neutrophils to chemotactic stimuli.
- They ingest and destroy bacteria, dead cells, iron and foreign matter.
- They also function as modulators of the immune response by processing antigen structure and facilitating the concentration of antigen at the lymphocyte's surface (antigen presentation).
Cells which derive from monocytes include:

- Kupffer cells of the liver
- Sinus lining cells of the spleen and lymph nodes
- Pulmonary macrophages
- Macrophages in the synovial, pleural and peritoneal fluid
- Dendritic antigen presenting cells
Identify the segmented neutrophil, band neutrophil, lymphocyte, monocyte, eosinophil, basophil, and platelet in the image below:
Platelets
Platelets (thrombocytes)

- Thrombocytes, are not true cells, but rather cytoplasmic fragments of a large cell in the bone marrow, the megakaryocyte.
- Blood normally contains 150,000 to 400,000 per microliter (µl) of platelets.
The image shows a number of platelets stained purple associated with some RBC's.
Platelets

- At any one time, about two-thirds of the body's platelets are circulating in the blood and one-third are pooled in the spleen.
- The life span of platelets is between 1 and 2 weeks.
- If not consumed in the process of blood clotting, they are destroyed by macrophages in the liver and spleen.
Lymphocytes

- their numbers increase in response to viral infections
- they contain deeply staining nucleus which may be eccentric in location, and small amount of cytoplasm
In this image, a lymphocyte and an erythrocyte can be seen in the lumen of a small blood vessel. Note the pseudopodia and the small amount of cytoplasm of the lymphocyte.
Lymphocytes

- Two major types of lymphocyte found in the blood are B-lymphocytes and T-lymphocytes.
A normal mature lymphocyte is seen on the left compared to a segmented PMN on the right. An RBC is seen to be about 2/3 the size of a normal lymphocyte.
Yahoo: getbodysmart (rozmaz, hemostaza)
Lymphocytes

- Although bone marrow is the ultimate source of lymphocytes, the lymphocytes that will become T cells migrate from the bone marrow to the thymus where they mature.

- Both B cells and T cells also take up residence in lymph nodes, the spleen and other tissues where they meet antigens, continue to divide by mitosis, mature into fully functional cells.
T lymphocytes with surface marker **CD8**

- **Cytotoxic T cells** - bind to virally infected cells and secrete cytokines which disrupt the plasma membrane, and kill the infected cells, thereby limiting the spread of virus.

- **Suppressor T cells** - develop more slowly from activated CD8 cells and suppress or turn off cytotoxic cells when a pathogen is no longer a threat.
T lymphocytes with surface marker **CD4**

- **Helper cells** - are essential for activating B cells and other T cells as well as natural killer cells and macrophages.

- **Memory cells** - develop from helper cells, and are capable of initiating an accelerated response to subsequent contact with antigen.
NK cells

- **Natural Killer (NK) cells** are yet another type of lethal lymphocyte. Like cytotoxic T cells, they contain granules filled with potent chemicals. They are called "natural" killers because they, unlike cytotoxic T cells, do not need to recognize a specific antigen before swinging into action. They target tumor cells and protect against a wide variety of infectious microbes.
T lymphocytes and cytokines

- T cells work by attacking antigens directly, or secreting substances known as **cytokines** or, more specifically, **lymphokines**.

- Binding to specific receptors on target cells, lymphokines call into play many other cells and substances, including the elements of the inflammatory response.

- They encourage cell growth, promote cell activation, direct cellular traffic, destroy target cells, and incite macrophages.

- A single cytokine may have many functions; conversely, several different cytokines may be able to produce the same effect.
One of the first cytokines to be discovered was interferon. **Interferon** from immune cells, known as gamma interferon, activates macrophages.

Two other cytokines, closely related to one another, are **lymphotoxin** (from lymphocytes) and **tumor necrosis factor** (from macrophages). Both kill tumor cells; tumor necrosis factor (TNF) also inhibits parasites and viruses.
B Lymphocytes

- Responsible for humoral immunity
- May also differentiate into:
 - Memory cells
 - Plasma cells (secrete antibodies)